>
- —
b
>
1° 4
o
7
7]
£
7]
[
v
>
)

Lab

Dlscoverlng permanent
denial of service attacks

against embedded
systems

EUSecWest 08

h
Rich Smith, HP Labs I.ABS P

Systems Security

© 2008 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice I.ab

I Who am | ?

Rich Smith

Lead the Research in Offensive Technologies &
Threats (RIOTT) project for HP Labs

Part of the Systems Security Lab
Based out of Bristol, UK

3 May 22, 08 [I'ABshp)

I Why am | talking about this?

An industry wide issue, not vendor specific
We are ahead of in the wild attack

No point ‘n’ click solutions, requires actions from
both developers and users

Anything requiring users cant be done behind the scenes

Proactive is key, pretending the attack focus isn’t
changing is naive and utopian

I Before we continue!!

5

All examples will be generalised

No zero day to be given away :p
Take away the overall message...
.... Don’t get hung up on specific bugs

May 22, 08

[LaBs™)

I Outline

Permanent Denial Of Service — PDOS
Research motivations

Phlashing — A method of remote PDOS
The PhlashDance fuzzing framework

Conclusions
Q&A

[LaBs™)

6 May 22, 08

Permanent Denial Of Service - PDOS

Denial Of Service (DOS):

Defn: The prevention of
authorized access to a
system resource or the
delaying of system
operations and functions’™

Service restored upon:

Cessation of
overwhelming traffic

Restarting service
Restarting system

* Definition from sans.org

Permanent Denial Of
Service ()

Defn: ‘DOS attack requiring
the introduction of new
hardware, or out of band
hardware re-initialisation in
order to restore service’

Service restored with
a restart
AKA Bricking

Methods of PDOS

- Both require somewhat ‘local’ access!

9 May 22, 08 [I'ABShP]

Remote PDOS ?

The research questions raised are:

Could PDOS be achieved without physical
access ?

If so:
Can a generic attack strategies be found?

And (obviously):
How could such attacks be mitigated?

10 May 22, 08 [I'ABshp)

FiIrmware

I Why start to look at firmware?

Major industry efforts to secure the endpoints
...causing shifts in target focus
Attack amplification — 1 to many devices

Firmware generally behind software in terms of
secure &

In the past is an area that has been over looked,
though that is starting to change

I (in)secure development

Often lots of legacy code
Code foundations not designed for current use

Secure development not as established as in
software

Security mechanisms that are in place are often
basic

New features == new security models
Difficult to manage overall device security
One password often not enough

I (in)secure deployment

Many devices fall outside of the security perimeter
Not included in audit

May not have security policies

Default security configurations often left

Firmware not updated — if it works leave it alone!
Difficult to manage heterogeneous device pool

No off the shelf products to check for compromise
Administrators unaware of many features

[LaBs™)

I Focus on firmware update mechanisms

Almost all network attached embedded devices
now have remote firmware update mechanisms

Part of the reality of product development
Post release product bugfix & enhancement
Part of the customer support model
If it stops working rollback to known good firmware
Reduce administration costs

Flash update mechanisms & PDOS

Good candidates for PDOS attack point as:
Turned ‘ON’ by default
Firmware binaries freely available on the net
Designed with error detection in mind, not malicious attack

The bootblock is not immutable, can be updated
Many devices need to boot into full OS to be reflashed

Only rudimentary security applied to reflash mechanisms

Few systems cryptographically protect firmware — most use CRC’s

Access control often very weak given the power reflash access
gives

Some systems bypass access control for recovery purposes!

[LaBs™)

I Firmware update mechanisms

Two generalised update methods:

: The FW binary is just sent to the device.
(Typically via FTP, SMB or raw TCP)

: The FW update is signaled to the device.
(Typically via SNMP)

The device then connects back to fetch the binary .
(Typically via TFTP)

Client side software utilities simplify the process,
maybe also do additional validation

[LaBs™)

‘Phlashing’

I Phlashing — because everything needs ‘ph’ing !

One method of achieving PDOS

(mis)using flash update mechanisms to corrupt
flash memory in a way which renders the device:

Unbootable (corrupt the boot block/loader)
Non-reflashable (through normal ‘inband’ methods)

I Phlashing — Attacking flash mechanisms

Blackbox research

To attempt remote PDOS, a devices flash update
mechanisms were attacked, manipulation of:
Binary firmware file format
Flashing application level protocol

Flash update logic bugs & flaws

[LaBs™)

Phlashing — Why bother?

Why not malware or rootkit the firmware??*
Both have their place, its not really one or the other
Different attack focus
Extortion & reputation damage — stealth not required

Easier to accomplish, achievable with:
Hex editor
Protocol analyser

Fits into existing criminal business models — easily
adopted

So likely to see sooner

*See Sebastian’s talk later

[LaBs™)

I Phlashing — Why bother?

Highly effective brand attack tool
Against both vendor or owner

costs of recovery for victim & vendor
Require new hardware & field installation
Longer diagnosis & downtime

cost of realisation for attacker
Fire and forget — unlike ddos

Can be conducted via internal trojaned boxes (email)
Few ongoing costs — No ‘rent-a-botnet’ required

I Phlashing game plan

Diff firmware files

Understand file construction & headers

Find CRC’c & algorithms

Look at flash application traffic (use mibdepot!)
Generate test traffic to flash good image

Find ranges that CRC’s cover

Wrote a little utility called legwarmer to try and work out
CRC algorithm and byte range used

Now fuzzing can begin......

[LaBs™)

Binary file format or firmware updates

Start to reverse engineer the binary file:
Most firmwares split into sections

Headers for each section + files headers contain:
Sizes & offsets
Section ID’s, types & orderings
Memory addresses of entry points / decompression points
‘Magic bytes’ for delimination & image ID
Version & device model numbers
Padding
CRC’s

[LaBs™)

I Example binary file points of interest

|ldentify memory addresses & alter values
Often entry points etc
Both ASCII ‘OXxAABBCCDD’ & integer AABBCCDD
Section duplication/deletion/reordeing

Fuzz on areas identified as:
Integers
Strings
Padding
Magic Bytes

CRC’s & Checksums

Most (though not all!) firmwares use some form
of checksum

Designed to pick up accidental ‘errors on the wire’
NOT intentional manipulation

Many are not cryptographic so can be regenerated
Surprisingly even though present sometimes not used

Often multiple checksums per file
Sometimes distinct sometimes overlapping/cascading

Almost always 32 bits in length

CRC32, XOR accumulation, homebrew crazyness

[LaBs™)

CRC’s & Checksums

Even if they are cryptographic (or you just can’t
work out the algorithm) attacks may still be
possible:

Multi-section binaries may not have overall checksum

Often due to device memory limitations and flash devices not
being designed with security in mind

Headers may not be covered by CRC’s

Occasionally the device does NO crypto checking, all
done in client software and simple CRC on device

I Flash application protocol

As devices gain functionality the number of ways
In which a device can receive firmware updates
have increased:

TFTP, FTP, HTTP, SMB, RAW TCP, Netware etc
Different protocols often use different code paths....
....which have been added to the codebase overtime

Initiate multiple flashes in parallel — race
condition

Restart flash many times — memory exhaustion
Call remote reboot function/bug during flash

[LaBs™)

Privilege escalation

Should an admin have the right to damage
hardware if he doesn’t have physical access??

Also acts as a bridge to allow a kind of privilege
escalation:

Those with only ‘logical’ access privileges (e.g. sys-
admins) to have some of the rights that those with
‘physical’ access privileges (e.g. DataCentre admin)
should have.

Gives a degree of physical touch to those with only
logical privileges

This can break many associated risk/threat models and
assumptions
[LaBs™)

I Mitigations

Developers
Remote updates OFF by default
Physical presence required to flash
Crypto signatures on binaries
Validation in firmware not client application
Design with attack tolerance not fault tolerance

[LaBs™)

I Mitigations

Users

Take device security seriously

Understand the full capabilities of device
Lock devices down

Patch your firmware

31 May22,08 [I'ABshp)

IFER-BEALS

I PhlashDance - The need for automation

Finding such bugs a good task for a fuzzer:
Tedious, repetitive, slow, huge number of possibilities

A combination between file-format fuzzing &
protocol fuzzing

Run against hardware not software

Decided to write one from scratch for the
experience + so it would fit my needs exactly

Written entirely in python

I PhlashDance — Design goals

Fuzz to specifically find phlash bugs

Integrate tool into secure product development
lifecycle

Usable non-security skilled engineers

Fuzz engine be generic as possible across devices
Easily extendable to new devices

Modular fuzz logic, expand library over time
Repeatable fuzz runs

Transport protocols not a fuzz target (FTP etc)
Plenty of tools already capable of this [Lass™)

Phlashdance high level architecture

pdshell]

I Phlashdance — device independence

Mutation based fuzzer — using firmware binary seed

Template based approach per device
Including checksum calculations
Fuzz tracking specifics

Common fuzz logic to all devices
Backend library of common flash transports

Fuzz tracking via abstraction layer aclling back to
template & common libraries

Phlashdance — Workflow

Workflow:

Seed file + template

File fuzz logic creates x mutants

CRC mutants

Protocol fuzz x mutants to y flash runs
Send to device

Track progress
++

37 May22,08 [I'ABshp)

I Phlashdance — device independence

[LaBs™)

38 May 22, 08

I Phlashdance firmware knowledge
template

|deally the knowledge template is the only thing
that should need to change for new device....
Knowledge template consists of:

Version number

Seed file location

Offsets & ranges for data types we have fuzz interest in

Flash transports this devices has available

Checksum algorithm + checksum offset/ranges

Fuzz tracking API calls

I Phlashdance example template

example template.py

40 May 22, 08 [I'ABShP]

I Phlashdance — Fuzz logic

Fuzz logic is designed to be generic & modular
Self selecting based upon template variables
Each module has a UUID

Can inherit from other logic modules

File fuzz logic creates 1 or more mutants

Protocol fuzz logic takes each mutant & for the
specified transports applies logic to initiate 1 or
more flash processes

Phlashdance — Fuzz logic example

from delim_logic import *
from block_logic import *

class partition_prepend(delim_logic):
uuid="2-0"
requires=["partition_marker”]

def __init_ (self, vars):
self.logic_name="Partition prepend"
delim_logic.__init__ (self, vars)

def logic(self):
This logic places a number of bytes in front of the partition marker
which indicates separate parts of the firmware
##Long string repeats various chars — BOF ticklers
self. mutant_images.extend(self.prepend_long_string(delims=self.partition_marker))
#tLong string repeats format string ticklers
self. mutant_images.extend(self.prepend_format_string(delims=self.partition_marker))

##Long string repeats the partition marker
self. mutant_images.extend(self.repeat_delim(delims=self.partition_marker))

42 May 22,08

[LaBs™)

I Phlashdance — hardware differences

Fuzzing software targets allows tracking by
attaching debugger
Hardware makes this difficult
Every device has different ways to track progress
Different granularities
Makes knowing when to start testing for PDOS tough
Often no data on what went wrong

Much slower — flash write latency

I Phlashdance limitations

V slow — need quite a bit of parallel hardware
Granularity of errors & tracking difficult

CRC implementation a bit clunky

More work needed on protocol fuzzing

44 May22,08 [LABShP)

I Phlashdance future

Emulation

Deep fuzz tracking possible — greater fuzz depth
Will make more generic across devices

Auto generate the firmware template from
firmware at compilation time

Improve fuzz tracking & pdos detection (JTAG?)

Integrate into a slicker firmware security QA
process — look at the bigger lifecycle picture

I Phlashdance advantage to vendor

Access to lots hw & fw knowledge

When emulation support is complete much faster
than attackers can be

Understand fw lineage

46 May 22,08 [LABShP)

I Conclusions

Just because something hasn’t happened

publically yet doesn’t mean we shouldn’t evaluate
potential risks

Most problems stem from the low security profile
firmware is given

Risk to firmware need to be understood from the
time of architecture & development

Well designed firmware can be badly deployed
Meaning the fix is not simple, but multi layered

[LaBs™)

I Conclusions

Phlashdance a start in a way to bring firmware
security wrt PDOS into the development lifecycle

Vendors in an advantageous position over attackers

Fuzzing hardware is heaps good fun and there is
plenty of ground left for others to explore

Thanks for your time!

Questions ?

[

