

© 2008 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

PhlashDance:
Discovering permanent
denial of service attacks
against embedded
systems

EUSecWest 08
Rich Smith, HP Labs

3 May 22, 08

Who am I ?

•  Rich Smith
•  Lead the Research in Offensive Technologies &

Threats (RiOTT) project for HP Labs
•  Part of the Systems Security Lab
•  Based out of Bristol, UK

4 May 22, 08

Why am I talking about this?

•  An industry wide issue, not vendor specific
•  We are ahead of in the wild attack
•  No point ‘n’ click solutions, requires actions from

both developers and users
− Anything requiring users cant be done behind the scenes

•  Proactive is key, pretending the attack focus isn’t
changing is naive and utopian

5 May 22, 08

Before we continue!!

•  All examples will be generalised

•  No zero day to be given away :p
•  Take away the overall message…
•  …. Don’t get hung up on specific bugs

6 May 22, 08

Outline

•  Permanent Denial Of Service – PDOS
•  Research motivations
•  Phlashing – A method of remote PDOS
•  The PhlashDance fuzzing framework
•  Conclusions
•  Q&A

PDOS

8 May 22, 08

Permanent Denial Of Service - PDOS

•  Denial Of Service (DOS):
− Defn:‘The prevention of

authorized access to a
system resource or the
delaying of system
operations and functions’*

•  Service restored upon:
− Cessation of

overwhelming traffic
− Restarting service
− Restarting system

•  Permanent Denial Of
Service (PDOS)
− Defn: ‘DOS attack requiring

the introduction of new
hardware, or out of band
hardware re-initialisation in
order to restore service’

•  Service not restored with
a restart

•  AKA Bricking

* Definition from sans.org

9 May 22, 08

Methods of PDOS

•  Both require somewhat ‘local’ access!

10 May 22, 08

Remote PDOS ?

•  The research questions raised are:
− Could PDOS be achieved remotely, without physical

access ?

•  If so:
− Can a generic attack strategies be found?

•  And (obviously):
− How could such attacks be mitigated?

Firmware

12 May 22, 08

Why start to look at firmware?

•  Major industry efforts to secure the endpoints
•  …causing shifts in target focus
•  Attack amplification – 1 to many devices
•  Firmware generally behind software in terms of

secure development & deployment
•  In the past is an area that has been over looked,

though that is starting to change…..

13 May 22, 08

(in)secure development

•  Often lots of legacy code
•  Code foundations not designed for current use
•  Secure development not as established as in

software
•  Security mechanisms that are in place are often

basic
•  New features == new security models
− Difficult to manage overall device security
− One password often not enough

14 May 22, 08

(in)secure deployment

•  Many devices fall outside of the security perimeter
•  Not included in audit
•  May not have security policies
•  Default security configurations often left
•  Firmware not updated – if it works leave it alone!
•  Difficult to manage heterogeneous device pool
•  No off the shelf products to check for compromise
•  Administrators unaware of many features

15 May 22, 08

Focus on firmware update mechanisms

•  Almost all network attached embedded devices
now have remote firmware update mechanisms

•  Part of the reality of product development
− Post release product bugfix & enhancement

•  Part of the customer support model
− If it stops working rollback to known good firmware

•  Reduce administration costs

16 May 22, 08

Flash update mechanisms & PDOS

•  Good candidates for PDOS attack point as:
− Turned ‘ON’ by default
− Firmware binaries freely available on the net
− Designed with error detection in mind, not malicious attack
− The bootblock is not immutable, can be updated

•  Many devices need to boot into full OS to be reflashed

− Only rudimentary security applied to reflash mechanisms
•  Few systems cryptographically protect firmware – most use CRC’s
•  Access control often very weak given the power reflash access

gives
•  Some systems bypass access control for recovery purposes!

17 May 22, 08

Firmware update mechanisms

•  Two generalised update methods:

− PUSH: The FW binary is just sent to the device.
 (Typically via FTP, SMB or raw TCP)

− PULL: The FW update is signaled to the device.
 (Typically via SNMP)
 The device then connects back to fetch the binary .
 (Typically via TFTP)

•  Client side software utilities simplify the process,
maybe also do additional validation

‘Phlashing’

19 May 22, 08

Phlashing – because everything needs ‘ph’ing !

•  One method of remotely achieving PDOS
•  (mis)using flash update mechanisms to corrupt

flash memory in a way which renders the device:
− Unbootable (corrupt the boot block/loader)
− Non-reflashable (through normal ‘inband’ methods)

20 May 22, 08

Phlashing – Attacking flash mechanisms

•  Blackbox research
•  To attempt remote PDOS, a devices flash update

mechanisms were attacked, manipulation of:
− Binary firmware file format
− Flashing application level protocol
− Flash update logic bugs & flaws

21 May 22, 08

Phlashing – Why bother?

•  Why not malware or rootkit the firmware??*
− Both have their place, its not really one or the other

•  Different attack focus
− Extortion & reputation damage – stealth not required

•  Easier to accomplish, achievable with:
− Hex editor
− Protocol analyser

•  Fits into existing criminal business models – easily
adopted

•  So likely to see sooner
*See Sebastian’s talk later

22 May 22, 08

•  Highly effective brand attack tool
− Against both vendor or owner

•  Higher costs of recovery for victim & vendor
− Require new hardware & field installation
− Longer diagnosis & downtime

•  Lower cost of realisation for attacker
− Fire and forget – unlike ddos
− Can be conducted via internal trojaned boxes (email)
− Few ongoing costs – No ‘rent-a-botnet’ required

Phlashing – Why bother?

23 May 22, 08

Phlashing game plan

•  Diff firmware files
•  Understand file construction & headers
•  Find CRC’c & algorithms
•  Look at flash application traffic (use mibdepot!)
•  Generate test traffic to flash good image
•  Find ranges that CRC’s cover
− Wrote a little utility called legwarmer to try and work out

CRC algorithm and byte range used

•  Now fuzzing can begin……

24 May 22, 08

Binary file format or firmware updates

•  Start to reverse engineer the binary file:
− Most firmwares split into sections
− Headers for each section + files headers contain:

•  Sizes & offsets
•  Section ID’s, types & orderings
•  Memory addresses of entry points / decompression points
•  ‘Magic bytes’ for delimination & image ID
•  Version & device model numbers
•  Padding
•  CRC’s
•  ….

25 May 22, 08

Example binary file points of interest

•  Identify memory addresses & alter values
− Often entry points etc
− Both ASCII ‘0xAABBCCDD’ & integer AABBCCDD

•  Section duplication/deletion/reordeing
•  Fuzz on areas identified as:
− Integers
− Strings
− Padding
− Magic Bytes

26 May 22, 08

CRC’s & Checksums

•  Most (though not all!) firmwares use some form
of checksum
− Designed to pick up accidental ‘errors on the wire’
− NOT intentional manipulation
− Many are not cryptographic so can be regenerated
− Surprisingly even though present sometimes not used
− Often multiple checksums per file

•  Sometimes distinct sometimes overlapping/cascading

− Almost always 32 bits in length
•  CRC32, XOR accumulation, homebrew crazyness

27 May 22, 08

CRC’s & Checksums

•  Even if they are cryptographic (or you just can’t
work out the algorithm) attacks may still be
possible:
− Multi-section binaries may not have overall checksum

•  Often due to device memory limitations and flash devices not
being designed with security in mind

− Headers may not be covered by CRC’s
− Occasionally the device does NO crypto checking, all

done in client software and simple CRC on device

28 May 22, 08

Flash application protocol

•  As devices gain functionality the number of ways
in which a device can receive firmware updates
have increased:
− TFTP, FTP, HTTP, SMB, RAW TCP, Netware etc
− Different protocols often use different code paths….
− ….which have been added to the codebase overtime

•  Initiate multiple flashes in parallel – race
condition

•  Restart flash many times – memory exhaustion
•  Call remote reboot function/bug during flash

29 May 22, 08

Privilege escalation

•  Should an admin have the right to damage
hardware if he doesn’t have physical access??

•  Also acts as a bridge to allow a kind of privilege
escalation:
− Those with only ‘logical’ access privileges (e.g. sys-

admins) to have some of the rights that those with
‘physical’ access privileges (e.g. DataCentre admin)
should have.
− Gives a degree of physical touch to those with only

logical privileges
− This can break many associated risk/threat models and

assumptions

30 May 22, 08

Mitigations

Developers
•  Remote updates OFF by default
•  Physical presence required to flash
•  Crypto signatures on binaries
•  Validation in firmware not client application
•  Design with attack tolerance not fault tolerance

31 May 22, 08

Mitigations

Users
•  Take device security seriously
•  Understand the full capabilities of device
•  Lock devices down
•  Patch your firmware

33 May 22, 08

PhlashDance - The need for automation

•  Finding such bugs a good task for a fuzzer:
− Tedious, repetitive, slow, huge number of possibilities

•  A combination between file-format fuzzing &
protocol fuzzing

•  Run against hardware not software
•  Decided to write one from scratch for the

experience + so it would fit my needs exactly
•  Written entirely in python

34 May 22, 08

PhlashDance – Design goals

•  Fuzz to specifically find phlash bugs
•  Integrate tool into secure product development

lifecycle
•  Usable non-security skilled engineers
•  Fuzz engine be generic as possible across devices
•  Easily extendable to new devices
•  Modular fuzz logic, expand library over time
•  Repeatable fuzz runs
•  Transport protocols not a fuzz target (FTP etc)
− Plenty of tools already capable of this

Phlashdance high level architecture

Specific FW
 knowledge
 templates!

File fuzz logic
 modules!

Fuzz engine!

Dispatcher &
 scheduler!

Status/Fuzz tracker!

Transport / flash
 libraries!

Seed FW!

file!
Device!

Audit!

Protocol fuzz logic
 modules!

pdshell

Serial!

…!

Heart-!

beat!
SNMP!

36 May 22, 08

Phlashdance – device independence

•  Mutation based fuzzer – using firmware binary seed
•  Template based approach per device
− Including checksum calculations
− Fuzz tracking specifics

•  Common fuzz logic to all devices
•  Backend library of common flash transports
•  Fuzz tracking via abstraction layer aclling back to

template & common libraries

37 May 22, 08

Phlashdance – Workflow

•  Workflow:
− Seed file + template
− File fuzz logic creates x mutants
− CRC mutants
− Protocol fuzz x mutants to y flash runs
− Send to device
− Track progress
− ++

38 May 22, 08

Phlashdance – device independence

Seed
Mutant A

Mutant B

Mutant C

Delivery A

Delivery B

Delivery C

Track

39 May 22, 08

Phlashdance firmware knowledge
template
•  Ideally the knowledge template is the only thing

that should need to change for new device….
•  Knowledge template consists of:
− Version number
− Seed file location
− Offsets & ranges for data types we have fuzz interest in
− Flash transports this devices has available
− Checksum algorithm + checksum offset/ranges
− Fuzz tracking API calls

40 May 22, 08

Phlashdance example template

•  example_template.py

41 May 22, 08

Phlashdance – Fuzz logic

•  Fuzz logic is designed to be generic & modular
•  Self selecting based upon template variables
•  Each module has a UUID
•  Can inherit from other logic modules
•  File fuzz logic creates 1 or more mutants
•  Protocol fuzz logic takes each mutant & for the

specified transports applies logic to initiate 1 or
more flash processes

42 May 22, 08

Phlashdance – Fuzz logic example

from delim_logic import *
from block_logic import *

class partition_prepend(delim_logic):
 uuid="2-0"
 requires=["partition_marker”]

 def __init__(self, vars):
 self.logic_name="Partition prepend"
 delim_logic.__init__(self, vars)

 def logic(self):
 """
 This logic places a number of bytes in front of the partition marker
 which indicates separate parts of the firmware
 """
 ##Long string repeats various chars – BOF ticklers
 self.mutant_images.extend(self.prepend_long_string(delims=self.partition_marker))
 ##Long string repeats format string ticklers
 self.mutant_images.extend(self.prepend_format_string(delims=self.partition_marker))

 ##Long string repeats the partition marker
 self.mutant_images.extend(self.repeat_delim(delims=self.partition_marker))

43 May 22, 08

Phlashdance – hardware differences

•  Fuzzing software targets allows tracking by
attaching debugger

•  Hardware makes this difficult
− Every device has different ways to track progress
− Different granularities
− Makes knowing when to start testing for PDOS tough
− Often no data on what went wrong

•  Much slower – flash write latency

44 May 22, 08

Phlashdance limitations

•  V slow – need quite a bit of parallel hardware
•  Granularity of errors & tracking difficult
•  CRC implementation a bit clunky
•  More work needed on protocol fuzzing

45 May 22, 08

Phlashdance future

•  Emulation
− Deep fuzz tracking possible – greater fuzz depth
− Will make more generic across devices

•  Auto generate the firmware template from
firmware at compilation time

•  Improve fuzz tracking & pdos detection (JTAG?)
•  Integrate into a slicker firmware security QA

process – look at the bigger lifecycle picture

46 May 22, 08

Phlashdance advantage to vendor

•  Access to lots hw & fw knowledge
•  When emulation support is complete much faster

than attackers can be
•  Understand fw lineage

47 May 22, 08

Conclusions

•  Just because something hasn’t happened
publically yet doesn’t mean we shouldn’t evaluate
potential risks

•  Most problems stem from the low security profile
firmware is given

•  Risk to firmware need to be understood from the
time of architecture & development

•  Well designed firmware can be badly deployed
•  Meaning the fix is not simple, but multi layered

48 May 22, 08

Conclusions

•  Phlashdance a start in a way to bring firmware
security wrt PDOS into the development lifecycle

•  Vendors in an advantageous position over attackers
•  Fuzzing hardware is heaps good fun and there is

plenty of ground left for others to explore

 Thanks for your time!

Questions ?

